Differentially Private Steering for Large Language Model Alignment
Anmol Goel, Yaxi Hu, Iryna Gurevych, Amartya Sanyal
International Conference on Learning Representations
(ICLR), 2025
Anmol Goel, Yaxi Hu, Iryna Gurevych, Amartya Sanyal
International Conference on Learning Representations
Aligning Large Language Models (LLMs) with human values and away from undesirable behaviors (such as hallucination) has become increasingly important. Recently, steering LLMs towards a desired behavior via activation editing has emerged as an effective method to mitigate harmful generations at inference-time. Activation editing modifies LLM representations by preserving information from positive demonstrations (e.g., truthful) and minimising information from negative demonstrations (e.g., hallucinations). When these demonstrations come from a private dataset, the aligned LLM may leak private information contained in those private samples. In this work, we present the first study of aligning LLM behavior with private datasets. Our work proposes the \textit{\underline{P}rivate \underline{S}teering for LLM \underline{A}lignment (PSA)} algorithm to edit LLM activations with differential privacy (DP) guarantees. We conduct extensive experiments on seven different benchmarks with open-source LLMs of different sizes (0.5B to 7B) and model families (LlaMa, Qwen, Mistral and Gemma). Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance, including alignment metrics, open-ended text generation quality, and general-purpose reasoning. We also develop the first Membership Inference Attack (MIA) for evaluating and auditing the empirical privacy for the problem of LLM steering via activation editing. Our attack is tailored for activation editing and relies solely on the generated texts without their associated probabilities. Our experiments support the theoretical guarantees by showing improved guarantees for our \textit{PSA} algorithm compared to several existing non-private techniques.
From Human Judgements to Predictive Models: Unravelling Acceptability in Code-Mixed Sentences
Prashant Kodali, Anmol Goel, Likhith Asapu, Vamshi Krishna Bonagiri, Anirudh Govil, Monojit Choudhury, Manish Shrivastava, Ponnurangam Kumaraguru
Preprint
, 2024
Current computational approaches for analysing or generating code-mixed sentences do not explicitly model "naturalness" or "acceptability" of code-mixed sentences, but rely on training corpora to reflect distribution of acceptable code-mixed sentences. Modelling human judgement for the acceptability of code-mixed text can help in distinguishing natural code-mixed text and enable quality-controlled generation of code-mixed text. To this end, we construct Cline - a dataset containing human acceptability judgements for English-Hindi (en-hi) code-mixed text. Cline is the largest of its kind with 16,642 sentences, consisting of samples sourced from two sources: synthetically generated code-mixed text and samples collected from online social media. Our analysis establishes that popular code-mixing metrics such as CMI, Number of Switch Points, Burstines, which are used to filter/curate/compare code-mixed corpora have low correlation with human acceptability judgements, underlining the necessity of our dataset. Experiments using Cline demonstrate that simple Multilayer Perceptron (MLP) models trained solely on code-mixing metrics are outperformed by fine-tuned pre-trained Multilingual Large Language Models (MLLMs). Specifically, XLM-Roberta and Bernice outperform IndicBERT across different configurations in challenging data settings. Comparison with ChatGPT's zero and fewshot capabilities shows that MLLMs fine-tuned on larger data outperform ChatGPT, providing scope for improvement in code-mixed tasks. Zero-shot transfer from English-Hindi to English-Telugu acceptability judgments using our model checkpoints proves superior to random baselines, enabling application to other code-mixed language pairs and providing further avenues of research. We publicly release our human-annotated dataset, trained checkpoints, code-mix corpus, and code for data generation and model training.
An Unsupervised, Geometric and Syntax-aware Quantification of Polysemy
Anmol Goel, Charu Sharma, Ponnurangam Kumaraguru
Empirical Methods in Natural Language Processing
(EMNLP), 2022
Anmol Goel, Charu Sharma, Ponnurangam Kumaraguru
(EMNLP), 2022
Polysemy is the phenomenon where a single word form possesses two or more related senses. It is an extremely ubiquitous part of natural language and analyzing it has sparked rich discussions in the linguistics, psychology and philosophy communities alike. With scarce attention paid to polysemy in computational linguistics, and even scarcer attention toward quantifying polysemy, in this paper, we propose a novel, unsupervised framework to compute and estimate polysemy scores for words in multiple languages. We infuse our proposed quantification with syntactic knowledge in the form of dependency structures. This informs the final polysemy scores of the lexicon motivated by recent linguistic findings that suggest there is an implicit relation between syntax and ambiguity/polysemy. We adopt a graph based approach by computing the discrete Ollivier Ricci curvature on a graph of the contextual nearest neighbors. We test our framework on curated datasets controlling for different sense distributions of words in 3 typologically diverse languages - English, French and Spanish. The effectiveness of our framework is demonstrated by significant correlations of our quantification with expert human annotated language resources like WordNet. We observe a 0.3 point increase in the correlation coefficient as compared to previous quantification studies in English. Our research leverages contextual language models and syntactic structures to empirically support the widely held theoretical linguistic notion that syntax is intricately linked to ambiguity/polysemy.
SyMCoM - Syntactic Measure of Code Mixing A Study Of English-Hindi Code-Mixing
Prashant Kodali, Anmol Goel, Monojit Choudhury, Manish Shrivastava, Ponnurangam Kumaraguru
Findings of the Association for Computational Linguistics
(ACL), 2022
Prashant Kodali, Anmol Goel, Monojit Choudhury, Manish Shrivastava, Ponnurangam Kumaraguru
(ACL), 2022
Code mixing is the linguistic phenomenon where bilingual speakers tend to switch between two or more languages in conversations. Recent work on code-mixing in computational settings has leveraged social media code mixed texts to train NLP models. For capturing the variety of code mixing in, and across corpus, Language ID (LID) tags based measures (CMI) have been proposed. Syntactical variety/patterns of code-mixing and their relationship vis-a-vis computational model’s performance is under explored. In this work, we investigate a collection of English(en)-Hindi(hi) code-mixed datasets from a syntactic lens to propose, SyMCoM, an indicator of syntactic variety in code-mixed text, with intuitive theoretical bounds. We train SoTA en-hi PoS tagger, accuracy of 93.4%, to reliably compute PoS tags on a corpus, and demonstrate the utility of SyMCoM by applying it on various syntactical categories on a collection of datasets, and compare datasets using the measure.